Danielle Nierenberg
President of Food Tank

Christopher Gardner, PhD
Professor of Medicine at Stanford U

Dean Ornish, MD
President, Preventive Medicine Research Institute

Dr. David Katz, MD, MPH
Founder and CEO of Diet ID

Diet for the Health of People and Planet

Quantifying the Environmental Impacts of Dietary Intake Patterns

April 27, 2022

The Planet Is Your Patient

David L. Katz

In 2021, as I write this, in any subsequent year that finds you reading it, and for that matter, for some number of years before this, too, "ne can no longer legitimately claim fiercely, for the health of the planet. Stated simply, there are no healthy people on a blighted planet no longer hospitable to the human animal. The planet is your patient; you should practice accordingly
There is a specific motivation for this concluding exhortation beyond the obvious,
the obvious being that our planet is desperately mperiled by our collective actions, our prevailing dietary patterns among them (1). That motivation is an amalgam of license, and relief.
On some number of occasions, before the COVID pandemic put actual podiums out of reach, I was privieged of fellow clinicins, and then meet many of them afterward, one on one, at a book signing or reception.
Those brief meetings routinely followed a talk in which I made the very assertion above accompanied by some flourish of impassioned gesticulations: "You cannot truly be a health professional anymore if you do not promote and protect by every means at your disposal the health of the planet! Yes, you are indeed authorized to address it with your patients; we are duty bound to do sa. Or something along those lines.
That is the "license" piece
look it upon myself, presumptuouslgam. I to authorize my fellow clinicians to consider, planetary health a clinical obligation consider deemed, and deem, it so. I exhorted because 1 on the great public health imperative of to take in clinical practice in that crucial

And they lined up to thank me; therein relief." More times than I can recall, colles the in that queue or gathering shook my hand (another bit of pre-pandemic nostaly gia!) hand thanked me for providing them the "license" to address what (1) mattered enormously to them and kept them up at night worrying and (2) always felt to them like something outside their professional purview. By contending otherwise, xasperation and professional expression and relief rendered was something like the release a pressure valve. Clinicians-educated, informed aware, and alarmed-could, at last, do something other than stew in anxious insomnia over the fate of our shared home. They could raise the same awareness among their patients and offer gight mate me individual of ourme and diterence independe choices And
And so can you, and so you should. In this brief culmination, I presume to offer you what I offered those prior audiences: the opportunity, and the obligation, to advise your patients to eat as if the world depends on it. Quite simply, it does (2)and that is the signature health issue of our time.

For the most part, this is a relatively easy sker feaders of this text. You are presumably, by self-selection, in a group more inclined than your recent predecessors to acknowledge and address the salience of nutrition in human health. The exhortation to factor the plane into those exchanges would complicate matters were the exigencies of human and planetary health discordant. Fortuitously, as detailed by the seminal EAT Planet, Health (2)-among others-the needs of

Agenda

- Dietary priorities for the health of people \& planet

Dean Ornish

- Sustainable agriculture in the service of planetary and public health Dani Nierenberg
- People, Planet, and Protein - a reality check Christopher Gardner
- Dietary Impacts on Environmental Measures: It's time to quantify David Katz
- Q\&A

People, Planet, Protein Reality Check

Christopher Gardner, PhD
Rehnborg Farquhar Professor of Medicine
Nutrition Scientist
Stanford University

© @GardnerPhD

Are you getting enough protein?

Requirement

THE PROTEIN FLIP

WHEN IT COMES 10 PLANT AND ANIMAL PROTEINS, IT'S NOT EETHER/OR

Address the health and environmental impocts of red meat consumption with the Protein Flipe rebalance the foods on our platess, re-inagine the value propasition of what we menu, and draw inspiration from glabal cuisines.

-.OR A EROCCOU SMR-FRY
WTH A FRW SMALI WITHCES OF REEF...

This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=10490

ISBN

978-0-309-08525-0
1357 pages
6x9
PAPERBACK (2005)

Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)

A Report of the Panel on Macronutrients, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes

Estimated Average Requirement (EAR)

Recommended Daily Allowance (RDA)

Req't / Rec / Intake

125 lbs	175 lbs	225 lbs	275 lbs
$(57 \mathrm{~kg})$	$(80 \mathrm{~kg})$	$(102 \mathrm{~kg})$	$(125 \mathrm{~kg})$

Estimated
Average
$0.66 \mathrm{~g} / \mathrm{kg}$
38 g
52 g
67 g
82 g
Requirement

Req't / Rec / Intake

Estimated
Average
Requirement

125 lbs	$\mathbf{1 7 5} \mathrm{lbs}$	225 lbs	275 lbs
$(57 \mathrm{~kg})$	$(80 \mathrm{~kg})$	$(102 \mathrm{~kg})$	$(125 \mathrm{~kg})$

$0.66 \mathrm{~g} / \mathrm{kg} \quad 38 \mathrm{~g} \quad 52 \mathrm{~g} \quad 67 \mathrm{~g} \quad 82 \mathrm{~g}$

Recommended Daily
$0.8 \mathrm{~g} / \mathrm{kg}$
46 g
64 g
$82 \mathrm{~g} \quad 100 \mathrm{~g}$
Allowance

Req't / Rec / Intake

Estimated
Average
$0.66 \mathrm{~g} / \mathrm{kg}$
38 g
52 g
67 g
82 g

Requirement
Recommended Daily
$0.8 \mathrm{~g} / \mathrm{kg}$
46 g
64 g
82 g
100 g Allowance

Average	$1.2-1.5 \mathrm{~g} / \mathrm{kg}$	$68-86$	$96-120$	$122-153$	$150-187$
American	(NHANES)	g	g	g	g
Intake					

The Lancet Commissions

Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems

Walter Willett, Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja Vermeulen, Tara Garnett, David Tilman, Fabrice DeClerck, Amanda Wood, Malin Jonell, Michael Clark, Line J Gordon, Jessica Fanzo, Corinna Hawkes, Rami Zurayk, Juan A Rivera, Wim De Vries, Lindiwe Majele Sibanda, Ashkan Afshin, Abhishek Chaudhary, Mario Herrero, Rina Agustina, Francesco Branca, Anna Lartey, Shenggen Fan, Beatrice Crona, Elizabeth Fox, Victoria Bignet, Max Troell, Therese Lindahl, Sudhvir Singh, Sarah E Cornell, K Srinath Reddy, Sunita Narain,
Sania Nishtar, ChristopherJ L Murray

Great Food Transformation Planetary Health Diet

January 2019

The Lancet Commissions

Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems

Walter Willett, Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja Vermeulen, Tara Garnett, David Tilman, Fabrice DeClerck,
Amanda Wood, Malin Jonell, Michael Clark, LineJ Gordon, Jessica Fanzo, Corinna Hawkes, Rami Zurayk, Juan A Rivera, Wim De Vries,
Lindiwe Majele Sibanda, Ashkan Afshin, Abhishek Chaudhary, Mario Herrero, Rina Agustina, Francesco Branca, Anna Lartey, Shenggen Fan,
Beatrice Crona, Elizabeth Fox, Victoria Bignet, Max Troell, Therese Lindahl, Sudhvir Singh, Sarah E Cornell, K Srinath Reddy, Sunita Narain,
Sania Nishtar, Christopher J LMurray

Food Groups	Calories	\% Total
Whole grains	811	32\%
Legumes	426	17\%
Plant oils	354	14\%
Dairy	153	6\%
Tree nuts	149	6\%
Fruit	126	5\%
All sweeteners	120	5\%
Palm oil, Lard	96	4\%
Beef, Pork, Chicken	92	4\%
Vegetables	78	3\%
Fish	40	2\%
Starchy vegetables	39	1.5\%
Eggs	19	<1\%
	2,500	100\%

	Macronutrient intake (possible range), g/day	Caloric intake, kcal/day	
Whole grains*			
Rice, wheat, corn, and other \dagger	232 (total gains 0-60\% of energy)	811	
Tubers or starchy vegetables			
Potatoes and cassava	50 (0-100)	39	
Vegetables			
All vegetables	300 (200-600)	.	
Dark green vegetables	100	23	
Red and orange vegetables	100	30	
Other vegetables	100	25	
Fruits			
All fruit	200 (100-300)	126	
Dairy foods			
Whole milk or derivative equivalents (eg, cheese)	250 (0-500)	153	
Protein sources \ddagger			
Beef and lamb	7 (0-14)	15	
Pork	7 (0-14)	15	
Chicken and other poultry	29 (0-58)	62	
Eggs	13 (0-25)	19	
Fish§	28 (0-100)	40	
Legumes			
Dry beans, lentils, and peas*	50 (0-100)	172	
Soy foods	25 (0-50)	112	
Peanuts	25 (0-75)	142	
Tree nuts	25	149	
Added fats			
Palm oil	6.8 (0-6.8)	60	
Unsaturated oils¢	40 (20-80)	354	
Dairy fats (included in milk)	0	0	
Lard or tallow\|		5 (0-5)	36
Added sugars			
All sweeteners	31 (0-31)	120	

Where will I get my protein?

Amino acid
 distribution

in plants?
Limiting?

Grams / 40 g protein \square Essential \square Non-Essential

Grams / $\mathbf{4 0}$ g protein \square Essential \square Non-Essential

Grams / $\mathbf{4 0}$ g protein \square Essential \square Non-Essential

Animal foods

Figure 1. Proportions of amino acids in selected foods across food groups. Grouped by essential and non-essential, in descending order of prevalence within groups.

Amount of protein per 100 kcal presented in Supp Table 1
(Source: Nutrition Database System for Research, University of Minnesota)

Figure 1.
Proportions of amino acids in selected foods across food groups. Grouped by essential and non-essential, in descending order of prevalence within groups.

Amount of protein per 100 kcal presented in Supp Table 1
(Source: Nutrition Database System for Research, University of Minnesota)

Figure 1.
Proportions of amino acids in selected foods across food groups. Grouped by essential and non-essential, in descending
order of prevalence within groups.

Amount of protein per 100 kcal presented in Supp Table 1
(Source: Nutrition Database System for Research, University of Minnesota)

Figure 1.
Proportions of amino acids in selected foods across food groups. Grouped by essential and non-essential, in descending
order of prevalence within groups.

Amount of protein per 100 kcal presented in Supp Table 1.
(Source: Nutrition Database System for Research,
University of
Minnesota)

Figure 1. Proportions of amino acids in selected foods across food groups. Grouped by essential and non-essential, in descending order of prevalence within groups.

Amount of protein per 100 kcal presented in Supp Table 1.
(Source: Nutrition Database System for Research, University of Minnesota)

Food Proteins: Quality, Use, and Need

> "Concern about the quality of individual food proteins is of only theoretical interest in settings where food is abundant. Most people in the US and Canada eat a variety of nutritious foods to meet their energy needs not just say, cookies, potato chips or alcoholic beverages. They would find it next to impossible not to meet their protein requirements, even if they were to eat no meat, fish, poultry, eggs, or cheese."

Sizer and Whitney, Nutrition Concepts and Controversies

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

CURRENT SCENARIO

90 grams protein 85:15 animal:plant

CURRENT SCENARIO

90 grams protein 85:15 animal:plant

~800 kcal

* Note: The proportions of bread, nutsland beans presented here are representative of current average daily American diet:

A Day's Worth of Protein on One Plate
Calories on both plates are similar, ~ 800 kcals ($\sim 33 \%$ of total kcals for a $2,500 \mathrm{kcal}$ diet)

Since all whole foods have protein, additional foods would provide additional protein

25\% less protein

Shift 25\% from animal to plant

SHIFT SCENARIO \#3
67.5 grams protein (25% decrease)

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

1. Reduce protein intake by $\mathbf{2 5 \%}$

Still exceeds RDA, RDA has safety buffer

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

1. Reduce protein intake by $\mathbf{2 5 \%}$

Still exceeds RDA, RDA has safety buffer
2. Shift from 85:15 to 60:40 animal:plant

Plant protein quality higher than many people believe

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

1. Reduce protein intake by $\mathbf{2 5 \%}$

Still exceeds RDA, RDA has safety buffer
2. Shift from 85:15 to 60:40 animal:plant

Plant protein quality higher than many people believe
3. $\mathbf{> 3 0 0}$ M people in United States

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

1. Reduce protein intake by $\mathbf{2 5 \%}$

Still exceeds RDA, RDA has safety buffer
2. Shift from 85:15 to 60:40 animal:plant

Plant protein quality higher than many people believe
3. $\mathbf{> 3 0 0}$ M people in United States
4. Green House Gas Emissions decrease 40\%

129 B Kg CO2 ${ }_{\text {eq }}$
8\% pledged under Paris Agreement

Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States

Christopher D. Gardner, Jennifer C. Hartle, Rachael D. Garrett, Lisa C. Offringa, and Arlin S. Wasserman

1. Reduce protein intake by $\mathbf{2 5 \%}$

Still exceeds RDA, RDA has safety buffer
2. Shift from 85:15 to 60:40 animal:plant

Plant protein quality higher than many people believe
3. $\mathbf{> 3 0 0}$ M people in United States
4. Green House Gas Emissions decrease 40\%

129 B Kg CO2 ${ }_{\text {eq }}$
8\% pledged under Paris Agreement
5. Consumptive Water Use decrease $\mathbf{1 0 \%}$

> 3.1 T gallons

Scientific Report of the 2015 Dietary Guidelines Advisory Committee

Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture

Executive Summary

...regarding sustainable diets... a diet higher in plant-based foods, such as vegetables, fruits, whole grains, legumes, nuts, and seeds, and lower in calories and animal-based foods is more health promoting and is associated with less environmental impact than is the current U.S. diet.

People, Planet, Protein Reality Check

The Case to Carpe DIEM

Quantifying Dietary Impacts on Environmental Measures

David L. Katz, MD, MPH

Abstract

Find your Diet ID

Including the choice of a grand confluence -

The EAT-Lancet Commission on Food, Planet, Health

RESEARCH ARTICLE

® Article Alerts	\rightarrow Share
N Email Article	$V_{\text {Tweet }}$
© Citation Tools	Like 1.1 K
© Request Permissions	Mendeley

(D) Michael A Clark, Marco Springmann, (D) Jason Hill, and (D) David Tilman + See all authors and affiliations

PNAS November 12, 2019116 (46) 23357-23362; first published October 28, 2019 ; https://doi.org/10.1073/pnas. 1906908116

Contributed by David Tilman, September 24, 2019 (sent for review April 23, 2019; reviewed by Tim G. Benton and Joan Sabate)
Article
Figures \& SI Info \& Metrics
\square PDF

Significance

Dietary choices are a leading global cause of mortality and environmental degradation and threaten the attainability of the UN's Sustainable Development Goals and the Paris Climate Agreement. To inform decision making and to better identify the multifaceted health and environmental impacts of dietary choices, we describe how consuming 15 different food groups is associated with 5 health outcomes and 5 aspects of environmental degradation.

[^0]

Diet Map Visual: Impact of diet on humanctolanetary health

The DIEM Project

Dietary Impacts on Environmental Measures

Marie Janiszewski
Harvard T.H. Chan School of Public Health, Nutrition Department
Nurse's Health Study Food Frequency Questionnaire

Gidon Eshel, Ph.D. - Harvard Radcliffe Institute
Environmental Indicators: Land Use, Water Use, GHGEs, and Reactive Nitrogen Use Martin Heller, Ph.D. - Center for Sustainable Systems

Regional impact of water footprints

Single Environmental Score

Food Item Scoring

Dietary Pattern Scoring

The future of DIEM

Thank you -

It's not what we don't know about diet that most threatens our health; it's the constant, wild misrepresentations of what we do know.

Questions and Discussion

Please submit your questions using the Q\&A tool in Zoom.

[^0]: $\oplus 3$ of 3

